[27] Barton LL, Duarte A, Staicu LC (2023) Genomic insight into iron acquisition by sulfate-reducing bacteria in microaerophilic environments. BioMetals 36(2), 339-350 (read)

[26] Ruiz-Fresneda MA, Staicu LC, Lazuén-López G, Merroun M (2023) Allotropy of selenium nanoparticles: colourful transition, synthesis, and biotechnological applications. Microbial Biotechnology 16(5), 877-892 (read)


Science outreach: “Gold mine bacterium can clean arsenic-polluted wastewater within days”. (read)

[25] Staicu LC, Wójtowicz PJ, Molnár Z, Ruiz-Agudo E, Gallego JL, Baragaño D, Pósfai M (2022) Interplay between arsenic and selenium biomineralization in Shewanella sp. O23S. Environmental Pollution 306, 119451 (read)


[24] Staicu LC, Ackerson C, van Hullebsuch ED (2021) Microbial biominerals: Towards new functions and resource recovery. Frontiers in Microbiology 12, 796374 (read)

[23] Staicu LC, Wojtowicz P J, Bargano D, Posfai M, Molnar Z, Ruiz-Agudo E, Gallego JL (2021) Bioremediation of a polymetallic, arsenic-dominated reverse osmosis reject stream. Letters in Applied Microbiology 75(5), 1084-1092 (read)

[22] Staicu LC, Barton LL (2021) Selenium respiration in anaerobic bacteria: does energy generation pay off? Journal of Inorganic Biochemistry 222, 111509 (read)

[21] Staicu LC, Stolz JF (2021) Microbes vs. metals: Harvest and recycle. FEMS Microbiology Ecology 97(5) fiab056 (read)


[20] Staicu LC, Wojtowicz PJ, Pósfai M, Pekker P, Gorecki A, Jordan FL, Barton LL (2020) PbS biomineralization using cysteine: Bacillus cereus and the sulfur rush. FEMS Microbiology Ecology 96(9) fiaa151 (read)

[19] Staicu LC, Bajda T, Drewniak L, Charlet L (2020) Power generation: Feedstock for high-value sulfate minerals. Minerals 10 (2), 188 (read)

[18] Kisser J, Wirth M, De Gusseme B, Van Eekert M, Zeeman G, Schoenborn A, Vinneras B, Finger DC, Kolbl Repinc S, Griessler Bulc T, Bani A, Pavlova P, Staicu LC, Atasoy M, Cetecioglu Z, Kokko M, Haznedaroglu BZ, Hansen J, Istenic D, Canga E, Malamis S, Camilleri-Fenech M (2020) A review of nature-based solutions for resource recovery in cities. Blue-Green Systems 2, 138-172 (read)


[17] Cordoba P, Staicu LC (2018) Flue Gas Desulfurization effluents: an unexploited selenium resource. Fuel 223, 268-276 (read)

[16] Staicu LC, Morin-Crini N, Crini G (2017) Desulfurization: Critical step towards enhanced selenium removal from industrial effluents. Chemosphere 117, 111-119 (read)

[15] Sura-de Jong M, Reynolds RJ, Richterova K, Musilova L, Staicu LC, Chocholata I, Cappa JJ, Taghavi S, van der Lelie D, Frantik T, Dolinova I, Strejcek M, Cochran AT, Lovecka P, Pilon-Smits EA (2015) Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. Front Plant Sci 6, 113 (read)

[14] Ni TW*, Staicu LC*, Nemeth R*, Schwartz C, Crawford D, Seligman J, Hunter WJ, Pilon-Smits EAH, Ackerson CJ. (2015) Progress toward clonable inorganic nanoparticles. Nanoscale 7, 17320-17327 *Co-first authors (read)

[13] Staicu LC, van Hullebusch ED, Oturan MA, Ackerson CJ, Lens PNL (2015) Removal of colloidal biogenic selenium from wastewater. Chemosphere 125, 130-138 (read)

[12] Staicu LC, van Hullebusch ED, Lens PNL, Pilon Smits E, Oturan MA (2015) Electrocoagulation of colloidal biogenic selenium. Environmental Science and Pollution Research 22, 3127-3137 (read)

[11] Staicu LC, van Hullebusch ED, Lens PNL (2015) Production, recovery and reuse of biogenic elemental selenium. Environmental Chemistry Letters 13, 89-96 (read)

[10] Staicu LC, Ackerson CJ, Cornelis P, et al. (2015) Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions. Journal of Applied Microbiology 119, 400-410 (read)

[9] Noblitt SD, Staicu LC, Ackerson CJ, Henry CS. (2014) Sensitive, selective analysis of selenium oxoanions using microchip electrophoresis with contact conductivity detection. Analytical Chemistry 86, 8425-8432 (read)


[8] Staicu LC, Barton LL (2023) Geomicrobiology: Natural and anthropogenic settings. Springer (in preparation)

[7] Staicu LC (2015) Production of colloidal biogenic selenium and removal by different coagulation-flocculation approaches. CRC Press/Balkema. Leiden, the Netherlands, ISBN 978-1-138-02819-7, pp. 148 (read)

Book chapters

[6] Staicu LC, Mikołaj Dziurzyński, Adrian Górecki (2023) “Mixed microbial communities: the case of selenium”, In: Geomicrobiology: Natural and anthropogenic settings. Staicu LC, Barton LL (Eds.) Springer (in preparation)

[5] Staicu LC, Simon S, Guibaud G, Shakeri Yekta SS, Calli B, Bartacek J, Fermoso FG, van Hullebusch ED (2019) “Biogeochemistry of trace elements in anaerobic digesters”. In: Trace elements in anaerobic biotechnologies, Fermoso FF et al. (Eds.), IWA, pp. 23-50, London, UK. (read)

[4] Staicu LC, Oremland RS, Tobe R, Mihara H (2017) “Bacteria vs. selenium: A view from the inside out”. In: Selenium in plants, Eds. Pilon-Smits EAH, Winkel L, Lin ZQ, Springer, pp. 79-108, Berlin (read)

[3] Staicu LC, Barton LL (2017) “Microbial metabolism of selenium – for survival or profit”. In: Bioremediation of selenium contaminated wastewaters, van Hullebusch ED (Ed.), Springer, pp. 1-31 (read)

[2] Staicu LC, van Hullebusch ED, Rittmann BE, Lens PNL (2017) “Industrial selenium pollution. Sources and biological treatment technologies”. In: Bioremediation of selenium contaminated wastewaters, van Hullebusch ED (Ed.), Springer, pp. 75-101 (read)

[1] Staicu LC, van Hullebusch ED, Lens PNL (2017) “Industrial Selenium Pollution: Wastewaters and Physical–Chemical Treatment Technologies”. In: Bioremediation of selenium contaminated wastewaters, van Hullebusch ED (Ed.), Springer, pp. 103-130 (read)