Research Article

PbS biomineralization using cysteine: *Bacillus cereus* and the sulfur rush

Lucian C. Staicu1,*, Paulina J. Wojtowicz1, Mihály Pósfi2, Péter Pekker3, Adrian Gorecki1, Fiona L. Jordan4 and Larry L. Barton4

1Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland, 2Department of Earth and Environmental Sciences, University of Pannonia, Egyetem u. 10, H-8200, Veszprém, Hungary, 3Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Egyetem u. 10, H-8200, Veszprém, Hungary and 4Department of Biology, University of New Mexico, MSCO3 2020, Albuquerque, NM 87131, USA

*Corresponding author: University of Warsaw, Miecznikowa 1, Warsaw 02–096, Poland. Tel: +48-22-55-41-302; E-mail: staicu@biol.uw.edu.pl

One sentence summary: This article describes a novel strategy employed by bacteria to reduce the toxicity of lead by forming a mineral with limited solubility.

Editor: John Stolz

ABSTRACT

Bacillus sp. Abq, belonging to *Bacillus cereus* sensu lato, was isolated from an aquifer in New Mexico, USA and phylogenetically classified. The isolate possesses the unusual property of precipitating Pb(II) by using cysteine, which is degraded intracellularly to hydrogen sulfide (H₂S). H₂S is then exported to the extracellular environment to react with Pb(II), yielding PbS (galena). Biochemical and growth tests showed that other sulfur sources tested (sulfate, thiosulfate, and methionine) were not reduced to hydrogen sulfide. Using equimolar concentration of cysteine, 1 mM of soluble Pb(II) was removed from Lysogeny Broth (LB) medium within 120 h of aerobic incubation forming black, solid PbS, with a removal rate of \(2.03 \mu\text{g L}^{-1}\text{h}^{-1}\) (\(\sim 8.7 \mu\text{M L}^{-1}\text{h}^{-1}\)). The mineralogy of biogenic PbS was characterized and confirmed by XRD, HRTEM and EDX. Electron microscopy and electron diffraction identified crystalline PbS nanoparticles with a diameter <10 nm, localized in the extracellular matrix and on the surface of the cells. This is the first study demonstrating the use of cysteine in Pb(II) precipitation as insoluble PbS and it may pave the way to PbS recovery from secondary resources, such as Pb-laden industrial effluents.

Keywords: *Bacillus cereus*; lead (Pb); cysteine; galena (PbS); biominerals

INTRODUCTION

Lead (Pb) ranks as a major anthropogenic pollutant, with mining industry and fossil fuel burning for energy production as major contributors (Needleman 2004; Rumble 2018). Because Pb is rarely found in nature as a pure element, its industrial production is based on the mineral galena (PbS). Various industrial activities, including the production of batteries, ammunition, plumbing, alloys, lead crystal glassware, shields for X-ray equipment and nuclear reactors, employ Pb as a raw material (Rumble 2018). All these products ultimately release lead to the environment contributing to its mobilization through geo- spheres. An important aspect adding to Pb pollution is the historical heritage related to its use as an anti-knock additive in gasoline and to mining activities (Mills, Simpson and Adderley 2014; Finlay et al. 2021). Although tetraethyllead, (CH₃CH₂)₄Pb, a petro-fuel additive used on large scale as an effective octane rating booster, has been phased out, its legacy still persists in terrestrial and aquatic ecosystems (Wedge 1999). Unlike organic pollution, metals (including Pb) do not degrade (mineralize) in the environment and thus accumulate over time.
Pb does not possess any known biological function and the lead ion, Pb(II), is highly toxic. Pb has detrimental effects on protein synthesis and leads to alteration of the osmotic balance, enzyme inhibition, nucleic acid damage, disruption of membrane functions and oxidative phosphorylation (Bruins, Kapil and Oehme 2000). Lead is neurotoxic and is associated with learning disabilities (Canfield et al. 2003). In bacteria, Pb(II) is suggested to cross the plasma membrane by non-specific uptake pathways for Mn(II) and Zn(II) (Bruins, Kapil and Oehme 2000). In certain cases, free Pb(II) does not accumulate in the cytoplasm because it is pumped out from the cell by export systems using P-type ATPases (Rensing et al. 1998). These transporters are distributed throughout Bacteria domain and include CadA, ZntA, and PbrA (Jaroslawiecka and Piotrowska-Seget 2014). Other intracellular proposed detoxification strategies include binding of Pb(II) to metallothioneins and precipitating it as insoluble phosphates (Dopson et al. 2003). However, this strategy comes with important costs in terms of energy (efflux systems), materials, and the challenge to store and handle solid inclusions intracellularly. A better alternative is to keep Pb out of the cell in a non-bioavailable, low-solubility form, such as phosphates, precipitated in extracellular polysaccharides, and polymers naturally occurring in the cell wall (Dopson et al. 2003).

From an environmental perspective, Pb biominaleralization as insoluble minerals is desirable because this process limits its mobility (Roane 1999). Apart from phosphates, sulfides (S\(^2\)) are known to form highly insoluble minerals. For instance, PbS has a low solubility constant product (K\(_{sp}\)) of 3.2 \times 10\(^{-28}\) (Rumble 2018), which renders it non bioavailable. Sulfide precipitation of metals is less pH sensitive than other metal precipitates, thus being a process active under a wide range of geochemical conditions (Fu and Wang 2011). Sulfate reducing bacteria (SRB) play a key role in the conversion of high valence state sulfur (e.g. SO\(_4^{2-}\)) to S\(^{2-}\) (Muyzer and Stams 2008; Barton and Fauque 2009). Understanding the behavior of Pb and the generation of sulfide by bacteria is critical not only for the environment but also for human health. Such was the case of Pb poisoning in Flint, Michigan, where the change in drinking water chemistry had a direct impact on Pb release from the aging water supply system (Roy and Edwards 2018). However, the use of low-valence state sulfur for the precipitation of lead as PbS has been marginally investigated. This is particularly relevant since low-valence states biomolecules (e.g. cysteine and methionine) are present in all bacteria and are a readily available source of sulfide for Pb detoxification.

The aim of this study was to evaluate the immobilization of Pb(II) by a bacterial strain able to produce hydrogen sulfide from cysteine and to characterize the PbS biominaleralization product. The specific objectives were to (i) identify if cysteine is the sole sulfide-source for PbS precipitation, (ii) establish if the biominaleralization process of PbS is intra- or extracellular and (iii) propose a model for cysteine utilization and PbS biominaleralization in the investigated bacterial strain.

MATERIALS AND METHODS

Bacterial strain isolation

The bacterial strain was isolated from an aquifer in New Mexico, USA (middle of the Rio Grande valley; Latitude: 35.106766 ′N, Longitude: −106.629181 ′W) by Prof. Larry Barton and his team at New Mexico University. The water sample was taken from well water drawn at 381 m below the surface.

Phylogeny

Total DNA extraction of the isolate was done using a Genomic Mini Kit (A & A Biotechnology, Gdynia, Poland) according to the manufacturer’s instructions. The DNA concentration was determined using the QubitTM 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA). About 10 ng of extracted DNA were used as a template for amplification of 16S rRNA gene. Reaction was prepared using KAPA HiFi polymerase in a final concentration of 0.5 U (KAPA Biosystems) and 0.3 μM of universal primers (27F: AGAGTTTGATCMTGGCTCAG, 1492R: GTTACCTTGTTACGACTT). Annealing was performed at 63 °C and a total of 27 cycles were used (Mastercycler Nexus G2X thermocycler, Eppendorf). Three technical replicates were pooled, purified by Clean up Purification Kit (EURx, Gdansk, Poland) and sent for sequencing (Oligo.pl, Polish Academy of Science, Warsaw, Poland).

For the phylogenetic classification of the isolate a molecular approach utilizing sequencing of the 16S rRNA gene was applied. A phylogenetic analysis based on the 16S rRNA gene sequence of the isolate and 100 other reference Bacillus species was performed using the Maximum Likelihood method and Tamura-Nei model (Tamura and Nei 1993). Phylogenetic tree was constructed using MEGA-X software (Kumar et al. 2018) involving additional 99 16S rRNA originating from Bacillus spp. strains deposited in NCBI database (as of 15 December 2019). This analysis involved 101 nucleotide sequences including 16S rRNA sequence of Clostridium botulinum 202F used as an outgroup. There were a total of 1367 positions in the final dataset. Evolutionary analyses were conducted in MEGA X (Kumar et al. 2018). Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (five categories (+G, parameter = 0.1132)).

Biochemical characterization

API 20E and 20NE strips were used to determine the biochemical profile of the strain according to the manufacturer’s instructions (BioMérieux). Triple Sugar Iron (TSI) Agar slants were prepared in the lab and contained agar 1.2%, peptone 2%, meat extract 0.3%, lactose 1%, sucrose 1%, glucose 0.1%, yeast extract 0.3%, NaCl 0.5%, sodium thiocelate 0.3%, and ferrous sulfate 0.2%, pH 7.4 (adapted from Sigma 2020). API 20E and 20NE, and TSI were performed in triplicate. Oil displacement activity assay was performed to assess the capacity of the strain to produce surfactants (this technique measures the diameter of clear zones on an oil-water surface resulted from dropping of a solution containing biosurfactant) (Morikawa 2006). In short, 50 μL of diesel oil containing Sudan red dye were added to a Petri dish containing distilled water. A drop of the supernatant and the unfiltered culture of the strain grown in LB and in LB + Pb + cysteine was added to the Petri dish, and the spreading of the oil was observed. A drop of a Bacillus subtilis ANT_WAS1 culture was used as control.

Incubations and reagents

Aerobic incubations:

Investigations on the capacity of the strain to metabolize lead and cysteine were carried out in Lysogeny Broth (LB). LB medium (from BioMaxima) contained tryptone 10 g L\(^{-1}\), yeast extract,
5 g L\(^{-1}\), NaCl 5 g L\(^{-1}\). LB medium was adjusted to pH 5 and autoclaved. Stock solutions of lead acetate trihydrate—hereafter Pb(II)—and of L-cysteine-HCl monohydrate (Sigma) were filter-sterilized using 0.2 \(\mu\)m pore diameter Acrodisc PF filters (Gelman Sciences, USA) and added aseptically to the growth medium as indicated to give final concentrations of total 1 mM of each. Due to the nature of the LB medium, an organically-rich solution, the soluble Pb(II) concentration can vary from one incubation to another. However, the results indicated a limited variation between independent experiments (±10–15%). To circumvent this limitation, the initial Pb(II) concentration \((c_0)\) was measured for all experiments and was used to calculate the Pb(II) removal rates. The flasks were inoculated with 1% of a stock culture of Bacillus sp. Abq and the incubation was carried out at 30°C on a rotary shaker at 150 rpm, in the dark. The initial pH value was set to 5.0 using 1 N HCl acid. The reason was the tendency of the pH to increase by around two units during incubation, reaching around 7.5 at the end of the experiment. Based on a pilot experiment, above pH 8 lead starts to precipitate from solution.

Anaerobic incubations:

Anaerobic incubations were performed in LB. 80 mL of sterile LB medium were added aseptically to serum bottles (120 mL), which were then crimp-sealed with butyl rubber septa and aluminum caps, and the headspace was flushed with nitrogen gas for 5 min through a 0.22 \(\mu\)m filter to ensure sterility. The incubations were performed at 30°C, pH 7.0, in the dark on a rotary shaker at 150 rpm. In order to better visualize the formation of the precipitate, after 48 h of incubation homogenous samples were taken and centrifuged in microcentrifuge tubes.

Electron microscopy

Samples for transmission electron microscopy (TEM) were prepared by depositing a drop of the cell suspension on copper TEM grids covered by an ultrathin amorphous carbon film. TEM analyses were performed using a Talos F200X G2 instrument (Thermo Fisher), operated at 200 kV accelerating voltage, equipped with a field-emission gun and a four-detector Super-X energy-dispersive X-ray spectrometer, and capable of working in both conventional TEM and scanning transmission (STEM) modes. Low-magnification bright-field (BF) images, high-resolution (HRTEM) images and selected-area electron diffraction (SAED) patterns were obtained in TEM mode. In addition, bright- and dark-field images were also obtained in STEM mode. Elemental compositions were determined using energy-dispersive X-ray spectrometry (EDS).

Lead (Pb) measurement and PbS analysis

Bacillus sp. Abq was grown in LB medium supplemented with 1 mM lead acetate and 1 mM L-cysteine or lead-containing LB medium without L-cysteine. The lead concentration was chosen based on literature reporting concentrations up to 1.5 mM Pb(II) in environmental samples associated with acid mine drainage (Campaner et al. 2014). We used equimolar and 3:1 concentrations of cysteine to Pb(II) in order to obtain stoichiometric removal and to demonstrate the impact of cysteine on increasing Pb(II) removal rates, respectively. Control experiments were performed to determine the potential abiotic interaction between Pb and cysteine. Another experiment assessed whether the degradation of cysteine was intra- or extracellular. For this, the supernatant of a Bacillus sp. Abq culture grown using the same incubation conditions in LB medium amended with 1 mM cysteine was recovered, filter-sterilized and incubated with 1 mM Pb(II), and with 1 mM Pb(II) + 1 mM cysteine. Cultures were incubated and incubated on the shaker at 30°C for 7 days. Samples were removed from the flasks at various time points (12, 24, 48, 72, 96 and 120 h), centrifuged at 6000 \(\times\)g for 10 min, and the supernatant was analyzed for lead after it was filtered through a Nucleopore filter with a pore diameter of 0.22 \(\mu\)m. The specific Pb(II) reduction rate was calculated from the slope of the linearized time course. The experiments were performed in triplicate.

Pb was measured by Flame Atomic Absorption Spectroscopy (FAAS) using a Thermo Scientific—SOLAR M Series and a gas mixture of air and acetylene. The calibration curve range was 0–10 mg L\(^{-1}\) and the lower limit of quantification was 0.01 mg L\(^{-1}\). PbS: The mineral composition of the investigated samples was obtained via powder X-ray diffraction (XRD) by using a SmartLab RIGAKU diffractometer with graphite-monochromatized CuKα radiation operating at 9 kV. The measurements were conducted at 2θ = 2–75 °θ (depending on the measurement) with a measuring step of 0.05 °θ/s. The XRD patterns were interpreted using the XRay program (Version 4.2.2).

RESULTS AND DISCUSSION

Phylogenetic classification of the isolate

Based on these results, the isolate was classified as Bacillus sp. Abq (Abq from Albuquerque, New Mexico). The accession number obtained for Bacillus sp. Abq is MT072324. The results (Fig. 1) indicate that the isolate is most closely related to Bacillus cereus (99.79% similarity) and to B. thuringiensis (99.79% similarity), which cluster together and belong to the Bacillus cereus sensu lato group (Jensen et al. 2003).

Morphology and biochemical characterization

On LB medium, Bacillus sp. Abq forms round, off-white colonies, with clear edges, ~5 mm across. The strain is aerobic, showing limited anaerobic growth (Fig. S1, Supporting Information).

The use of API test kits (20E and 20 NE) revealed that the isolate can use a wide range of substrates such as citrate, arginine, tryprophan, gelatin, esculin, and glucose (aerobically and via fermentation) (Table S1, Supporting Information). In addition, Bacillus sp. Abq reduces nitrate to nitrite, and uses various carbohydrates including maltose, gluconate and maltose. On the other hand, it cannot degrade urea, does not produce indole or H₂S (from thiosulfate, S₂O₃⁻) and it cannot use a number of carbohydrates such as mannitol, inositol and saccharose.

The biochemical analysis was complemented by performing the Triple Sugar Iron (TSI) test (Fig. S1, Supporting Information). The bottom of the tube turned yellow, indicative of glucose fermentation. The fact that no darkening appeared in the inoculated tube revealed the incapacity of Bacillus sp. Abq to reduce sulfate and thiosulfate to hydrogen sulfide, that would have reacted with the Fe(II) present in the medium by forming a black iron sulfide mineral precipitate.

Numerous Bacillus species have been reported for their capacity to produce various surfactants such as surfactin, iturin A, polymixins and lipopeptides (Jahan et al. 2020). In order to check the possibility of an extracellular interaction of bacterial products with cysteine and Pb(II), the production of surfactants by the isolate was tested using the oil displacement activity...
Figure 1. Phylogenetic tree for 16S rRNA sequence of Bacillus spp. GenBank accession number of the 16S rRNA sequences used for the phylogenetic analysis are given in parentheses. The tree with the highest log likelihood (-9369.02) is shown. Statistical support for the internal nodes was determined by 1000 bootstrap replicates and values of ≥50% are shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. The 16S rRNA of the Bacillus sp. Abq, analyzed in this study, is highlighted by a red rectangle.
assay and was compared to Bacillus subtilis ANT, WA51, a strain capable of surfactant production. Bacillus sp. Abq did not produce surfactants in any of the test conditions: in LB, in LB + Pb, and in LB + Pb + cysteine.

Lead (Pb) removal

Figure 2A presents the aerobic removal of lead by Bacillus sp. Abq in the presence of 1 mM and 3 mM cysteine. Using equimolar cysteine to Pb (1:1 ratio), the strain started to remove Pb from solution after the first 12 h of incubation (−4%), at which point the removal increased with incubation time. 14% Pb was removed after 24 h, 44% after 48 h, 59% after 72 h, 81% after 96 h, while at the last sampling point, 120 h, no Pb was detected in solution. Interestingly, using a 1:3 ratio Pb to cysteine, the Pb removal kinetics were accelerated, 56% removal was detected in solution. Interestingly, a 1:3 ratio Pb to cysteine, the Pb removal kinetics were accelerated, 56% removal was detected in solution. By tripling the ratio of Pb to cysteine, the Pb removal rate only increased 2.35-fold (2.03 μg L\(^{-1}\) h\(^{-1}\) vs 4.78 μg L\(^{-1}\) h\(^{-1}\)). This indicates that the increase of the removal rate is not a linear process, leading to saturation for concentrations exceeding the equimolar ratio. In the case of the abiotic control (Pb + cysteine), Pb concentration remained constant in solution as a function of time. Overall, this set of results identifies cysteine as the causative agent of Pb removal from solution and Bacillus sp. Abq as the agent capable of using cysteine for this process.

The growth of Bacillus sp. Abq was measured under various conditions: the culture in LB, the culture in LB supplemented with 1 mM cysteine, the culture in LB supplemented with 1 mM Pb(II), and the culture in LB supplemented with 1 mM cysteine and 1 mM Pb(II). As a general observation, the culture supplemented with 1 mM cysteine and 1 mM Pb(II) displayed the highest optical density (OD) relative to the other three conditions that gave comparable results (Fig. 3). During the first 12 h of growth, the cultures produced similar optical densities; however, after this time point, the Pb(II) + cysteine incubation started to exhibit a higher OD than the other treatments. These results should be interpreted with caution because the formation of black PbS interferes with the proper OD measurement, thus not indicating a better growth of Bacillus sp. Abq when exposed to Pb(II) and cysteine. The important point is that the removal of Pb from solution is well correlated with the bacterial growth, confirming the biotically-driven lead transformation in this system. In order to exclude the possible chemical interaction of cysteine with Pb, we performed a series of experiments in LB and sterile distilled water at pH values relevant for the current study (pH 5, 7 and 9). The results did not indicate any formation of black PbS, nor the removal of Pb from solution (data not shown).

Pb(II) is suggested to cross the bacterial plasma membrane through non-specific uptake pathways for Mn(II) and Zn(II) (Jaroslawiecka and Piotrowska-Seget 2014). Bacteria have evolved efficient extracellular and intracellular defense mechanisms against lead toxicity. Lead can be sequestered outside the bacterial cell through its precipitation as insoluble phosphates or adsorption onto extracellular polysaccharides (Dopson et al. 2003). Lead sulfide has a very low solubility, \(K_{sp} = 3.2 \times 10^{-28}\), second to phosphates, e.g. lead phosphate, \(K_{sp} = 3 \times 10^{-44}\) (Rumble 2018). However, in view of the scarcity and essentiality of phosphorous for bacterial metabolism, the use of phosphates to sequester Pb(II) has marginally been reported (Chen et al. 2016).

In some instances, Pb(II) is pumped out from the cell by export systems using P-type ATPases which are distributed throughout bacteria (Rensing et al. 1998). These transporters...
include CadA, ZntA, and PbrA (Jaroslawiecka and Piotrowska-Seget 2014). Interestingly, these transporters appear to have an efficient crosstalk. For instance, when PbrA transporter was inactivated in *Cupriavidus metallidurans* CH34, the zntA and cadA increased their activity to complement for the loss of the former (Taghavi et al. 2009). Hynninen et al. (2009) documented a mixed detoxification mechanism where Pb(II) is first exported from the cytoplasm by PbrA and then is sequestered extracellularly as a phosphate salt using the inorganic phosphate produced by PbrB.

PbS formation under aerobic and anaerobic conditions

The formation of PbS under aerobic conditions in LB starts after 12 h of incubation and increases during incubation, accompanied by a progressive darkening of the solution (Fig. 4A). This indicates the progressive increase in PbS concentration with time, a result supported by the decrease in concentration of soluble Pb(II) (Fig. 2A). A separate experiment aimed to establish if cysteine can be degraded extracellularly by collecting the supernatant from a *Bacillus* sp. Abq culture grown using the same incubation conditions in LB medium amended with 1 mM cysteine was recovered. The supernatant was filter-sterilized and inoculated with 1 mM Pb(II), and with 1 mM Pb(II) + 1 mM cysteine. The incubations did not turn black and the Pb measurement did not indicate any Pb removal during the 7-day incubation period (data not shown). The abiotic control containing 1 mM Pb(II) and 1 mM cysteine indicates PbS cannot be formed. Since we could not perform the analysis on cysteine degradation as a function of incubation time, the decrease in Pb(II) concentration, the formation of PbS (characterized in detail below), as well as the control experiments, collectively indicate the contribution of cysteine as the source of H₂S and its intracellular degradation by *Bacillus* sp. Abq.

In a separate experiment, *Bacillus* sp. Abq was incubated in LB anaerobically (Fig. 4B). An abiotic control experiment containing LB medium amended with cysteine and Pb(II) was performed to exclude the possibility that the components of the

Figure 4. PbS formation by *Bacillus* sp. Abq under aerobic and anaerobic conditions. (A), Aerobic incubation after 48 h in LB medium. The incubations were conducted under the same conditions as described in Fig. 2. The abiotic control contains LB, 1 mM Pb(II) and 1 mM cysteine, but without bacterial inoculum. (B), Anaerobic incubation after 48 h in LB medium. The incubations were conducted at initial pH 7.0, final pH 7.5–8.0, 30 °C, 150 rpm, dark. The abiotic control contains LB, 1 mM Pb(II) and 1 mM cysteine, but without bacterial inoculum. 1 mM SO₄, sulfate, S₂O₃, thiosulfate, and methionine were used under anoxic conditions.
medium can react with Pb(II) forming PbS. The anaerobic experiment concluded that sulfide can only be formed by Bacillus sp.

Abq in the presence of cysteine, as documented by the formation of a black precipitate (Fig. 4B). All other sulfur sources could not be used to generate \(\text{H}_2\text{S} \). The formation of whitish precipitates in all other treatments, including the abiotic control experiment, indicates the formation of Pb(II) oxides at pH \(\sim 8.0 \). These results indicate that this strain was able to degrade cysteine anaerobically to \(\text{H}_2\text{S} \). On the other hand, the possible use of sulfate and thiosulfate by Bacillus sp. Abq for anaerobic respiration can be ruled out (Barton and Fauque 2009).

PbS characterization

Low-magnification TEM images show cells surrounded by very fine-grained, crystalline material, producing dark contrast in bright-field images (Fig. 5). The nanoparticles occur extracellularly and some are tightly attached to bacterial cells.

Figure 5. Bright-field TEM image showing dark clusters of PbS nanoparticles surrounding Bacillus sp. Abq formed under aerobic conditions. PbS nanoparticles are present in the extracellular environment and some are tightly attached to bacterial cells.

According to XRD data, the sample is dominated by lead sulfide, PbS (Fig. 7), with all detected peaks belonging to galena. The peaks on the diffractogram are slightly broad, which indicates the small (nm-scale) crystal size of the precipitate.

Model of cysteine degradation and extracellular PbS formation

Cysteine is the source of sulfur for the biosynthesis of a numerous cofactors such biotin, lipic acid, molybdopterin and thiamine, as well as Fe-S clusters in proteins and thionucleosides in tRNA (Marquet 2001). Identifying the enzyme responsible for cysteine degradation was beyond the scope of this study. How-

ever, based on a literature survey briefly presented below, it appears no cysteine-degrading enzyme has been shown to be active extracellularly. For instance, cysteine desulforase is an intracellular enzyme that catalyzes the conversion of \(\text{L}-\text{cysteine} \) to \(\text{L}-\text{alanine} \) and sulfane sulfur via the formation of a cysteine persulfide intermediate (Mihara and Esaki 2002). Cystathionine \(\beta \)-synthase was also found to produce \(\text{H}_2\text{S} \) upon reaction of cysteine in Bacillus anthracis (Devi et al. 2017). On the other hand, cysteine desulfhydrase catalyzes the conversion of \(\text{L}-\text{cysteine} \) to sulfide, ammonia, and pyruvate (Takagi and Ohtsu 2016). From this perspective, Bacillus sp. Abq seems to possess a cysteine desulfhydrase or a cystathionine \(\beta \)-synthase able to release sulfide from cysteine. The formation of cysteine-Pb(II) complexes was reported at high pH values (9.1–10.4) and at mole ratios varying from 2.1 to 10.0, with \(C_{\text{S(II)}} = 0.01 \) and 0.1 M (Jallevand et al. 2015). The experimental conditions used in the current study do not support the possibility to form such complexes.

According to the available results, it is reasonable to conclude that cysteine is internalized by Bacillus sp. Abq, then enzymatically degraded at the intracellular level and a portion of the released sulfide is exported to the extracellular milieu as \(\text{H}_2\text{S} \). Extracellularly, \(\text{H}_2\text{S} \) dissociates and sulfide reacts with Pb(II),
yielding PbS (Fig. 8). H$_2$S has an acid dissociation constant, $pK_a \approx 7.0$ (Rumble 2018). The extracellular transfer of H$_2$S to react with Pb(II) is further supported by Fig. S4 (Supporting Information) showing a brown halo surrounding bacterial colonies grown aerobically on Pb and cysteine containing media.

The model of Pb(II) precipitation using cysteine by Bacillus sp. Abq is supported by the following results: (i) Pb is removed as a function of incubation time (Fig. 2A), (ii) Cysteine is the source of sulfide used for PbS precipitation (Fig. 4), (iii) Increasing cysteine concentration accelerates Pb removal rate, (iv) PbS particles form extracellularly (Fig. 5) and (v) A brown halo forms outside bacterial colonies, indicating the release of sulfide and the precipitation of PbS (Fig. S4, Supporting Information).

Because Pb is toxic for bacteria, sequestering it as a low solubility mineral offers the advantage of neutralizing its toxicity. Cysteine is a critical amino acid for bacterial metabolism, being an important stock molecule, and taken from the environment or/synthesized endogenously from serine (Takagi and Ohtsu 2016). The limited choice of Bacillus sp. Abq for cysteine as a strategy for Pb precipitation might be explained in the nature of this amino acid itself. Sulfur is present in cysteine as sulfide, a highly reactive valence state with high affinity for metals (Staicu et al. 2019). Consequently, the possibility to readily obtain sulfide from cysteine, bypassing the time-consuming production of S^{2-} from high-valence states of sulfur (e.g. sulfate, sulfite, thiosulfate), might help bacteria to counteract Pb toxicity in a fast and efficient manner. It is noteworthy to mention that H$_2$S has been reported to act as a universal defense against antibiotics in bacteria (Shatalin et al. 2011) and is exported to the extracellular milieu by diffusion (Mathai et al. 2009).

It is possible that initially Pb(II) enters the cell and triggers a detoxification reaction by pumping out Pb(II) ions. However, this
Figure 7. XRD of biogenic PbS produced by Bacillus sp. Abq under aerobic conditions.

Figure 8. Model of Pb detoxification in Bacillus sp. Abq using cysteine and forming low-solubility PbS. Figure not drawn to scale.

strategy is both energy intensive and not efficient on medium and long term since Pb(II) can enter in the cell again. The use of cysteine as a feedstock for sulfide could be the second response mechanism of bacteria, as forming an insoluble mineral outside the cell renders Pb non-bioavailable. Roane (1999) documented the formation of Pb precipitates intracellularly (Bacillus megaterium) and extracellularly (Pseudomonas marginalis). However, the study did not investigate the mineralogical nature of the two precipitates, while in the case of P. marginalis it was hypothesized the involvement of an exopolymer in the sequestration of Pb.

Biomineralization process of PbS: Resource recovery perspectives

Lead is used on large scale by various industrial applications, generating waste materials (e.g. wastewater) charged with significant amounts of Pb. If not properly treated, Pb will be released to the environment leading to pollution and biodiversity loss (Brink, Horstmann and Peens 2019). Such an industrial effluent is spent lead-acid battery wastewater, a matrix containing high levels of sulfate (grams L\(^{-1}\)) and Pb (<5 mg L\(^{-1}\)) (Vu et al. 2019). Most of the studies investigating this industrial wastewater type only focused on its treatment, while the resource recovery component was not taken into consideration. Importantly, PbS (galena) is currently the main source of lead production using pyrometallurgical processes (Rumble 2018). Because Pb is present in spent lead-acid battery wastewater in its soluble form, Pb(II), PbS formation offers the advantage of efficient recovery in the form of a solid product. Moreover, recovering PbS from a secondary resource would contribute to reducing the pressure on natural resources in the framework of circular economy (Cordoba and Staicu 2018; Kisser et al. 2020). The purity of the recovered biogenic PbS is in contrast with the mined minerals which are mixed with other minerals and gangue. Pyrometallurgical processes for Pb production are energy intensive and require numerous production phases, entailing additional costs and environmental degradation. The increased demand for metals using finite resources makes recycling of secondary resources critical in the near future (Vidal et al. 2017).

CONCLUSION

This study documented a novel precipitation strategy used by Bacillus sp. Abq, a novel strain isolated from an aquifer in New Mexico, USA and belonging to Bacillus cereus sensu lato, against lead (Pb) by means of degrading cysteine and extracellularly precipitating PbS (galena). The experimental dataset supports the
model of cysteine import from the growth media, active degradation of cysteine at the intracellular level and the export of sulfide, moiety released from this amino acid, followed by the precipitation of Pb as highly insoluble and non-bioavailable PbS. One significant finding is the narrow size of PbS, ~10 nm, and its exclusive extracellular biomineralization. Its extracellular distribution is indicative of an efficient system that prevents the reentering of toxic Pb in the cell. Biogenic PbS is crystalline and shows a high degree of purity when compared with reference materials. Because PbS is currently the main source of Pb industrial production, this study might open the possibility to biologically recover galena from Pb-laden wastewaters and use it as feedstock instead, replacing raw and limiting materials. From a microbial ecology perspective, identifying new pathways used by bacteria to precipitate Pb(II) would serve to decontaminate industrially-polluted soils that are a legacy of past heavy industrial activity using a non-invasive, eco-friendly treatment approach. Additionally, understanding the microbial metabolism of Pb is crucial in man-made infrastructures such as the aging water supply systems made of lead conduits (e.g. the lead poisoning event in Flint, Michigan). In a follow-up study, we plan to investigate the potential of this bacterial isolate to precipitate other toxic metals (e.g. Cd) using cysteine, therefore exploring its full potential to form non-toxic and chemically stable metal sulfides.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSEC online.

ACKNOWLEDGMENTS

LS and PJW acknowledge the National Science Centre (NCN), Poland, Grant number 2017/26/D/NZ1/00408, for financial support. LS acknowledges Dr Alina Maria Holban (University of Bucharest, Romania), Prof Hisaaki Mihara (Ritsumeikan University, Japan) and Dr Rob van Houdt (Belgian Nuclear Research Centre, Belgium) for productive discussions. FLJ was supported by a Patricia Robert-Harris fellowship and the research was supported, in part, by a grant to LLB from the US Department of Energy through the Waste-Management Education and Research Consortium and the Sandia National Laboratories under Contract DE-AC04-90AL8500. The authors acknowledge Tomasz Bajda (AGH-KGHM, Krakow) for help with XRD analysis and Bartosz Rewerski (UW) for Pb analysis. The authors recognize Belinda Ramirez and Nada Kherbik for technical assistance in this project. TEM studies were performed at the Nanolab of the University of Pannonia, using Grants no. GINOP-2.3.3–15–2016–0009 and GINOP-2.3.2–15–2016–00017 from the European Structural and Investments Funds and the Hungarian Government.

Conflicts of interests. None declared.

REFERENCES

Campaner VP, Luiz-Silva W, Machado W. Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil. An Acad Bras Cienc 2014;86:539–54.

Supplementary Material

PbS biomineralization using cysteine: *Bacillus cereus* and the sulfur rush

Lucian C. Staicu¹*, Paulina J. Wojtowicz¹, Mihály Pósfai², Péter Pekker³, Adrian Gorecki¹, Fiona L. Jordan⁴, and Larry L. Barton⁴

¹Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland

²Department of Earth and Environmental Sciences, University of Pannonia, Egyetem u. 10, H-8200, Veszprém, Hungary

³Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Egyetem u. 10, H-8200, Veszprém, Hungary

⁴Department of Biology, University of New Mexico, MSC03 2020, Albuquerque NM 87131, USA
Figure S1. Triple Sugar Agar (TSI) test. Left (control, uninoculated slant), right (slant inoculated with *Bacillus* sp. Abq). The bottom of the tube turned yellow, indicative of glucose fermentation. The fact no darkening appeared in the inoculated tube shows the incapacity of *Bacillus* sp. Abq to reduce sulfate and thiosulfate to hydrogen sulfide, that would have reacted with the Fe(II) present in TSI, thus forming a black iron sulfide mineral precipitate.
Figure S2. Analysis of the family of M-peaks produced by Pb in an EDS spectrum obtained from a cluster of nanocrystals. Both graphs show a raw spectrum with a fitted background, a modeled curve fitted to the peaks, and a curve for the residual intensity (the remaining intensity after subtracting the modeled value from the net intensity), as indicated in the graph. (a) Modeled fit with S present; (b) modeled fit with S absent; as seen from the higher values of the residual curve in (b), modeling with S present produces a far better result, suggesting the particles contain both Pb and S.
Figure S3. Selected-area electron diffraction pattern of a cluster of Pb-bearing nanocrystals. The rings indicate that the particles are crystalline and occur in random crystallographic orientations. The rings correspond to distinct periodicities (d-spacings) in the crystals, as shown by the values (in Å) written on them. All d-spacings and their relative intensities are consistent with the structure of galena, PbS.
Figure S4. Growth of *Bacillus* sp. Abq on agar-LB plates containing 1mM cysteine, 1 mM Pb(II), and 1 mM cysteine + 1 mM Pb(II). The brown halo on the third plate supports the hypothesis that sulfide is exported outside bacterial colonies where it reacts with Pb(II) forming black PbS.
Table S1. Biochemical characterization of *Bacillus* sp. Abq (+, positive reaction; -, negative reaction).

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Enzyme Description</th>
<th>24h</th>
<th>48h</th>
<th>Acronym</th>
<th>Enzyme Description</th>
<th>24h</th>
<th>48h</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONPG</td>
<td>β-galactosidase</td>
<td>-</td>
<td>-</td>
<td>NO₃</td>
<td>Nitrate reduction to NO₂</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ADH</td>
<td>Arginine dihydrolase</td>
<td>-</td>
<td>+</td>
<td>TRP</td>
<td>Indole production (TRyptoPhane)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LDC</td>
<td>Lysine decarboxylase</td>
<td>-</td>
<td>-</td>
<td>GLU</td>
<td>D-glucose fermentation</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>ODC</td>
<td>Ornithine decarboxylase</td>
<td>-</td>
<td>-</td>
<td>ADH</td>
<td>L-Arginine dihydrolase</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CIT</td>
<td>Citrate utilization</td>
<td>-</td>
<td>+</td>
<td>URE</td>
<td>Urease</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H₂S</td>
<td>Hydrogen sulfide production</td>
<td>-</td>
<td>-</td>
<td>ESC</td>
<td>Hydrolysis (β-glucosidase) (ESCulin)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>URE</td>
<td>Urease</td>
<td>-</td>
<td>-</td>
<td>GEL</td>
<td>Hydrolysis (protease) (GELatin)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>TDA</td>
<td>Tryptophan deaminase</td>
<td>+</td>
<td>+</td>
<td>PNPG</td>
<td>4-Nitrophenyl-β-D-glucopyranoside</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IND</td>
<td>Indole production</td>
<td>-</td>
<td>-</td>
<td>GLU</td>
<td>Assimilation (GLUcose)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>VP</td>
<td>Acetoin production</td>
<td>-</td>
<td>-</td>
<td>ARA</td>
<td>Assimilation (ARAbinose)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GEL</td>
<td>Gelatinase</td>
<td>+</td>
<td>+</td>
<td>MNE</td>
<td>Assimilation (ManNosE)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GLU</td>
<td>Glucose fermentation/oxidation</td>
<td>+</td>
<td>+</td>
<td>MAN</td>
<td>Assimilation (MANnitol)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MAN</td>
<td>D-Mannitol fermentation/oxidation</td>
<td>-</td>
<td>-</td>
<td>NAG</td>
<td>Assimilation (N-Acetyl-Glucosamine)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>INO</td>
<td>Inositol fermentation/oxidation</td>
<td>-</td>
<td>-</td>
<td>MAL</td>
<td>Assimilation (MALtose)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Fermentation/Oxidation</td>
<td>Assimilation</td>
<td>Potassium Gluconate</td>
<td>CAPric Acid</td>
<td>ADIpic Acid</td>
<td>Malate</td>
<td>trisodium Citrate</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>SOR</td>
<td>D-Sorbitol</td>
<td>GNT</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RHA</td>
<td>L-Rhamnose</td>
<td>CAP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SAC</td>
<td>D-Saccharose</td>
<td>ADI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MEL</td>
<td>D-Melibiose</td>
<td>MLT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMY</td>
<td>Amygdaline</td>
<td>CIT</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>ARA</td>
<td>L-Arabinose</td>
<td>PAC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>